In traditional quality control, specialists inspect various objects and identify critical defectsHowever, this workforce is shrinking as more workers retire, and fewer young people are interested in these roles. Additionallymanual inspection is very prone to human error, with error rates up to 30%. 

AIpowered visual inspection can solve both the workforce shortage and human error by training AI models to mimic human inspectors. A welltrained AI can even achieve near-perfect accuracy, much faster than manual labor.

KLM Air France aerospace inspection 3

AI-powered Computer Vision goes beyond mere automation. Here is how they differ:

AI-powered Computer Vision

  • Uses Computer Vision expanded with deep learning and advanced algorithms
  • Adapts to changing environments by learning from the data it processes  
  • Is better at inspecting complex defects with high variety that otherwise require human intelligence 

Automation

  • Relies on simpler logic based on rules and relying on sensors 
  • Requires human intervention to change its parameters and rules 
  • More effective for simpler, easily quantifiable measurements 

The process behind AI-powered Quality Control projects

Once you decide to implement AI-powered visual inspection in your company, there are several essential steps in the process that you need to consider, to ensure you will have the best possible solution 

Technical audit

A technical audit is the steppingstone to determine whether automated visual inspection is beneficial for an organization. There are a few ways to do this: 

  1. Conducting a feasibility study with a small dataset and using its preliminary results to assess whether a proposed project can be launched, with some modifications if necessary  
  2. Visiting the client’s site to assess the available equipment, to estimate costs and the duration of the full-scale project 

Once the technical audit is complete, a short report is provided that determines whether the project is feasible. With the technical audit’s success, it’s time to provide an extensive proposal and kickstart the project!  

Data collection

After a successful technical audit, it’s time to collect dataDepending on the use case, the optimal hardware configuration is determined and set up at the client’s site.  The amount of data required for this stage depends on the scope and complexity of the project. 

AI model training

While generic AI models exist, they likely won’t meet your specific needs. The ideal solution will be determined by in-house experts. In general, the AI model will likely be based only on data collected on site or consist of a combination of pre-trained models that will be re-trained to suit the client’s specific situation.  

Training an AI with diverse data related to your case generally results in the most robust AI model. In order for the AI to prove that it is robust, it will undergo a series of tests to ensure it outperforms humans and that it can be continuously improved. 

Reports and dashboards

Once the AI model is ready, the next step is to present the findings in easy-to-understand, actionable insights that the client can easily access and implement.  

Based on the client’s needs, the integration process is determined. Does the client prefer an app they can easily access via a tablet? Or maybe they prefer a dashboard integrated in their internal systems? The most suitable option is chosen in collaboration with the client. 

Key factors for a successful project

Once you decide to implement automated visual inspection in your company, there are several essential steps in the process that you need to consider, to ensure you will have the best possible solution 

Sufficient data

To train an AI model, a vast amount of data is required. Sometimes, there is simply no method to collect sufficient data for AI model training. But there are a few tricks that can help overcome this issueOne of them is combining AI with more conventional computer vision techniques. Computer vision can aid with AI model training because it can pre-process the data for the AI.  For example, with the help of computer vision, the object that needs to be inspected can be singled out so that the AI ‘knows’ what exactly it needs to be trained on. 

Collaboration

Collaboration is vital when operating at the bleeding edge of technology. As a multidisciplinary AI and Robotics engineering company, a lot of value can be added if the client gets involved in the process and acts as a collaborator. This is how true innovation can be achieved when working with cutting-edge technologies.  

From conducting a technical audit to successfully implementing a solution into the client’s systems and processes, it is essential to keep the overarching goal main purpose in mind: contributing to a more sustainable and efficient future of business with the help of AI and Robotics. 

This is what Cboost is all about. For over five years, we have worked with industry leaders across fields such as manufacturing, aviation, agriculture, and more. We delivered successful automated visual inspection projects that improved our client’s processes, reduced the need for manual labor, and optimized resources. 

Lets
get in
touch

How would you like to be contacted?(Required)
This field is for validation purposes and should be left unchanged.